Bolus tracking is a technique used in computed tomography imaging, to visualise vessels more clearly. A bolus of radio-opaque contrast media is injected into a patient via a peripheral intravenous cannula. Depending on the vessel being imaged, the volume of contrast is tracked using a region of interest at a certain level and then followed by the CT scanner once it reaches this level. Images are acquired at a rate as fast as the contrast moving through the blood vessels.
A maximum intensity projection (MIP) is a computer visualization method for 3D data that projects in the visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced from the viewpoint to the plane of projection. This implies that two MIP renderings from opposite viewpoints are symmetrical images.
This technique is computationally fast, but the 2D results do not provide a good sense of depth of the original data. To improve the sense of 3D, animations are usually rendered of several MIP frames in which the viewpoint is slightly changed from one to the other, thus creating the illusion of rotation. This helps the viewer's perception to find the relative 3D positions of the object components. However, since the projection is orthographic the viewer cannot distinguish between left or right, front or back and even if the object is rotating clockwise or anti-clockwise.
MIP is used for the detection of lung nodules in lung cancer screening programs which utilise computed tomography scans. MIP enhances the 3D nature of these nodules, making them stand out from pulmonary bronchi and vasculature.
Where different structures have similar radiodensity, it can become impossible to separate them simply by adjusting volume rendering parameters. The solution is called segmentation, a manual or automatic procedure that can remove the unwanted structures from the image.
Some slices of a cranial CT scan are shown below. The bones are whiter than the surrounding area. (Whiter means higher attenuation.) Note the blood vessels (arrowed) showing brightly due to the injection of an iodine-based contrast agent.
Computed tomography of human brain, from base of the skull to top. Taken with intravenous contrast medium.
A maximum intensity projection (MIP) is a computer visualization method for 3D data that projects in the visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced from the viewpoint to the plane of projection. This implies that two MIP renderings from opposite viewpoints are symmetrical images.
This technique is computationally fast, but the 2D results do not provide a good sense of depth of the original data. To improve the sense of 3D, animations are usually rendered of several MIP frames in which the viewpoint is slightly changed from one to the other, thus creating the illusion of rotation. This helps the viewer's perception to find the relative 3D positions of the object components. However, since the projection is orthographic the viewer cannot distinguish between left or right, front or back and even if the object is rotating clockwise or anti-clockwise.
MIP is used for the detection of lung nodules in lung cancer screening programs which utilise computed tomography scans. MIP enhances the 3D nature of these nodules, making them stand out from pulmonary bronchi and vasculature.
Where different structures have similar radiodensity, it can become impossible to separate them simply by adjusting volume rendering parameters. The solution is called segmentation, a manual or automatic procedure that can remove the unwanted structures from the image.
Some slices of a cranial CT scan are shown below. The bones are whiter than the surrounding area. (Whiter means higher attenuation.) Note the blood vessels (arrowed) showing brightly due to the injection of an iodine-based contrast agent.
Computed tomography of human brain, from base of the skull to top. Taken with intravenous contrast medium.
A volume rendering of this volume clearly shows the high density bones.
Bone reconstructed in 3D
After using a segmentation tool to remove the bone, the previously concealed vessels can now be demonstrated.